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++2 6 regarding a collec-

A
. . . > .
Consider the hypothesis Hl .61 62 p-3 .

tion, 61,9?,~--,6k, of unknown parameters. It is clear that this trend

is reflected in certain possible parameter sets more than in others. A

quantification of this notion of conformity to a trend, which was sug-

gested by Barlow and Brunk (1972), is studied. Applications of the

resulting theory to several order restricted hypothesis tests are

presented.
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. 1. Introduction. Order restricted statistical inference is concerned
with procedures which take into account information relating to the magni- ,
tudes of parameters indexing the population or populations of interest. |
For example, suppose ul,u2,---,uk are the means of k normal popula-

tions and suppose that it is known or suspected that they satisfy

(1.1) Hit Wzp, 2002 My -

Estimates and test procedures which take this information intoc account d.
were first studied in the mid-50's and a number of names are associated ,
with this work. Much of this theory, together with the history of these

problems, is discussed in Barlow, Bartholomew, Bremner and Brunk (1972). P

Throughout this paper it will be convenient to think of a vector such as

G

o= (ul.up,---,uk) as a parameter. In case the parameter, M, is a

X ; .t . r
vector then Hy will denote its 1—'}l coordinate.

In hypothesis testing the ~bjective is to use certain experimental

results to either confirm or reject Hl or a similar hypothesis. It

seems clear that Hl is more likely to be confirmed when sampling from

certain populations than when sampling from others. For example, if

k = 3 then H1 is more likely to be confirmed when i = (4,2,0) than

when W= (2,2.2). It seems reasonable to say that (L,2,0) conforms

more closely to Hl than does (2,2,2). A quantification of this notion

of conformity to a hypothesis would be a very useful tool in order

restricted inference. For example, in hypothesis testing, "pood” test

procedures should have error structures having monotone properties when
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evaluated at possible parameters which are comparable under this notion

of conformity (cf. Section 3.4). In a Bayesian approach, one might search
for priors which assign higher probabilities to parameters conforming more
closely to the order restriction.

How can we quantify this concept? One approach would be through
distances to the hypothesis. Specifically, if H1 denotes the collec-
tion of points satisfying our hypothesis then for any point, {, we could
measure the distance from M to H1 in some way. One problem with such
an approach would be that d(u,Hl) =0 for all u € Hl so that we could
not distinguish between such points and clearly some such points conform
more closely than do others.

Barlow and Brunk (1972) mentioned another idea which does not seem
to have been explored in any depth in the literature. Consider the rela-

tion, >>, defined on Euclidean space, ’Rk, by x = (xl,xg,---,xk) >>

Yy = (yl,yg,---,yk) if and only if

i i
(1.2) T x, = z 3 i=1,2,v++,k=1
J=1J J=lyJ
and
ok
1.3 Z? .= ..
( ) i=1x1 Qi:lyl

It is obvious that 2> 1is related to the concept of stochastic ordering
and it is straightforward to verify that it is a partial order.
Let C Dbe the subset of Rk consisting of all those points

= v e S e 2 . f t
X (xl,xﬁ. ,xk) such that x 2 x, X If both x and y

I

lie in C then x 2>y is equivalent to "x majorizes y" in the Schur

sense (of. Hardy, Littlewood and Polya (1973)). Ochur majorization has




been used as a quantification of the notion of dispersion. Thus, if
x >y and if x,y € C then, in some sense, the coordinates of x are
more dispersed than those of y.

Viewing C geometrically as a subset of Euclidean Xk space, Rk,
it is a closed convex cone. It is reasonably straightforward (cf. Theorem
2.1) to see that x >y if and only if y-x is in C*, the dual cone of
C, (cf. Barlow and Brunk (1972)). The cone c* is the set of all points

z € RK such that the inner product Zf xizi, is nonpositive for all
i=

1
x €C. The cones C and C¥ together with an arbitrary point x and

{y 1y > x] are pictured in Figure 1.

Figure 1

This geometry suggests a second quantification of conformity, namely
x << 'y if and only if y~x € C. We will have this second quantification
in mind and also explore its properties.

Consideration of the case k=2 1is also informative. The set C is
simply the set of points pictured in Figure 2 which lie to the lower right
of the diagonal line X, = X If x,y € R and if x > y then (1.3)

requires that x and y lie on the same diagonal linc (having slope -1)
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{x; x>y}

Figure 2

and (1.2) requires that x is to the right of y. Thus if y € C then so
is x and x 1is "deeper” in C than is y. 1If y € C then x 1is closer
to C than is y. The set {x; x >>* y} is the =set of all points which
lie to the lower right of the diagonal line through v having clope 1.

In Section 2, properties of the partial order, <<, are developed.
In Section 3 we prove two preservation theorems which say that if u func-
tion is isotonic with respect to this partial order, if a statistic is
formed from the data using this function, and if two parameter values are
ordered by <<, then the "larger” parameter value produces the lareer
expected value of the statistic. Several examples are considered in Gee-

tion L. Tn Example L.1 the preservation theorems developed in Section 3
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! are used to argue monotone properties of certain power functions. In
addition, those preservation theorems are used to argue the least favor-
able status of certain parameter configurations for tests where the null

hypothesis is not simple. In Examples 4.2 and L.3 testing problems are

considered where one of the hypotheses imposes a relationship using <<
on two parameter sets. It is interesting to note that the chi-bar~
squared distribution, which is used extensively in order restricted
hypothesis testing, arises again in this context.

2. Properties of >>. The following theorem is proved in Sectioun Four
of Barlow and Brunk (1972}.

Theorem 2.1. If x,y € Rk then a necessary and sufficient condition for
x >>y iz that

{r1) lk (y.-x. )z, s 0

j=1 1 177
for al' . € C.
>>

Remark. If A C-Rk and if A has a lower bound with respect to

then A has a greatest lower bound.

Proof: The greatest lower bound is the veector £ = (11,11,---,ﬁ<) whose

coordinates are the solutions to the k equations

I&"'41,{=inf‘{yl+"'+yi;y€}\}; 121,020, k.

Ly T . ATt s _— T Gk tath
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It is convenient, at this point, to introduce some notation. Let |||
denote the norm on Rk defined by qu2 = Zf lx?. For each point x € Rk
i=
let P(x|C) be the point in C which minimizes h(z) = |x-z|| 2. The
point P(x!C) is termed a projection of x onto C and properties of the

operator P(°|C) are discussed in Brunk (1965).

Theorem 2.2. The point P(x|C) 1is equal to the greatest lower bound of the

set of all points z in C such that z >> x (i.e., P(x|C) =

inf{z €C; z >x}).

Proof: Let x = P(x|C) = (§i,§é,---,§%) and note (by (2.4) of Brunk (1965))

that x € {z €C; z>>x] so that this set is nonempty and if x is a lower

bound it must be a greatest lower bound. Let ;l= ---==;i > X PO
1 1
D> e >_ :.--:— - g 3 S. 0S8
xio xia 1+1 xa so that x has a 1level set Suppose
>> i 41 5§ < i . x = P i _i
y €C, vy x and i#1 s3<i .. Then X, (xir+l xirﬂ)/(lr+1 1r)

and using well known properties of ;, we write:

J in (3-1) i
L ox, =L x + z"_‘—-)- X,
i=11 i=1 ? Lre17iy i=i 41 1
i =i 7 g J-i ipel
=41 -~ 7-——~1;— L x, + ———1L X
RS IS N e T

r - n -] 1
< |1 - 7 Elry + it Vle
1r+l_1rJ i=1 1 [ESS R CA U
i J-1 i
r r+l
=Ly, +- r

R - i i, PR - Ty ""’\i;.'a."""-._.a._“ — : L
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The last inequality is because Y1 2 Yo 2 e 2 Y S© that the average of
the values of yi over ir+l to J 1is at least as large as the average

. It is well known that Z? x, = ZF X. so that

over i +1 to i +1 .
r r i=1 2 i=1 1

since J 1is arbitrary, this completes the argument.

Corollary 2.3. If x >>y then P(x|C) >> P(y|cC).

Proof: This follows from Theorem 2.2 and the observation that

{zec; 2>>x} c{z€c; z>>y].

Note: The above result does not follow from Theorem 7.9 in Barlow et al.

(1972) since their (7.19) fails for >>.

Definition. If £ :Rk-—4 R then we say f 1is ISO 1if and only if x >y
implies that f(x) 2 f(y) (i.e., f 1is isotonic with respect to >>).

Note that any function which depends on xl,x -,xk only through

5t

Theorem 2.4. If x,y € R® then x >y if and only if f(x) = f(y) for
all f which are ISO.
J
Proof: Use the fact that the function g{(x) = > xi is IS0 for all j.
2rool i=1
For any function f of k-real variables let fi denote the partial

derivative (if it exists) of f with respect to the i&n' variable.

g
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Theorem 2.5. If the function f :Rk —» R is differentiable and if

fi(x) 2f, _{(x) for all x and for all i <k-1 then f 1is 1ISO.

i+l

Proof: Suppose x << y. Using the mean value theorem there exists a point

z on the line segment joining x and y such that
£lx) -£(y) = L (x,-y)f, (2).

(z)) is in C so

OQur hypothesis implies that the point (fl(z),f (z),-'-,f‘k z

that f(x) s f(y) from Theorem 2.1.

Example 2.1. Chacko (1966) (cf. also Robertson (1978)) studied a likelihood
ratio test for testing the equality of a collection of multinomial parameters

when the alternative is restricted by the trend H1 PD, =D, =2 D

1 12 k’

Theorem 2.5 can be used to show that the power function of this likelihood
ratio test is ISO on C. Suppose we have a random sample of size n and

that the resulting success frequencies are Xl’x“""’xk {(i.e., the random
r=

0,"',Xk) has a multinomial distribution with parameters

<

vector (Xl,X
n, pl,pz,---,pk). For each positive integer m, let Am be the set of

all k tuples of nonnegative integers whose sum is m and let

);pizo.’i=19?—s'..ak,§:k P =l}.

B = {{v D,
{ i=1 1

LR

1P Tty

L) =

,?’...’}k

Theorem 2.6. If f(-): AL — R is IS0 then h(nl,;

---,Xk)] is IS0 on B,

Proof: Fix i and consider the partial derivative,

e W




n
hi(P) = szA f(x) (x s ’xk by Py
n
y y
-1 1 k
=7 f(y RO 3 DR Yon - ( n'. ) oD Teeep T,
YEA , 1 i k AR k
Thus ,
- = P c e . + e e a1
h, (») - h () Zy l{f(yl, N A R S ¥+l ¥y )]
n-1 Y Yy
- nf .. ) bl BRERY
10Ty ‘
and if j > i then (y1,~--,yi+1, yk) >> (y1 ¥ +1, -'-,yk) for all

y €A . The desired result follows.

n-1

In testing
ratio statistic
X = ("1""7’%{’

01

* %
=171 i

on C. But x >y 1implies that x >> v by Corollary
fices to show that the function Xf x; 1n X, is IS0 on C.

a = (x "...’xil’.é’...

X, >x,, I <]
i

k Kk
T a, lun, = 2,
i=1 1 1 :
X, +
be written f !
X

P
our assumphtions

Thus in tes

i=1l

HO to= k(1,1

-+,1) against Hl-HO the likelihood

T = <2 1n X = 22& x. In X.-2n ln n+2on 1n k  where

01 i=1 1

= p(x|C). In order

1

to show that the vower function of

k —
T is IS0, it suffices to show that the function L. x, In X,

(cf. Corollary 3.1 in Brunk (196%)) is 180

and 0 < ) < x,-Xx
i

b, Inb.. However
i i

) x,+8
(1+lny)dy—j‘J

3

ting H against

0

’xk) and b = (x ,x +8,

Consider
1

xk) where x € C,

It suffices to show that

, the difference of these two sums can

(1 +1ny)dy, which is nonncpative by

H]-HO the likelihood ratio statistic

BREEVINISY . W RNt
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has a power function which is 1ISO. 1In Section Four the preservation
theorems presented in Section Three will be used to obtain additional

results of this nature.

3. Preservation Theorems. The theorems in this section have a number of

potential applications. They can be used, as in Section L4, to argue that

the power functions of test statistics which have been proposed for cer-

tain order restricted problems are 1IS0. Also in Section L they are
used to show the least favorable status of certain parameter configurations
in problems where the null hypothesis does not completely specify the dis-

tribution of the test statistic.

Theorem 3.1. Suppose {Pk; ).GA} is a family of probability measures on
the Borel subsets of Rk, where A Cle. Assume that if a k-dimensional
random vector X has distribution PX then X - X has distribution Q
where Q is independent of A. If f :Rk — Ry if f is ISC and if

h: A~ R is defined by

(x)

h(X) = f(x)ar
Iy x

then h(-*) iz ISO on A.

Proof: Assume A >> 8§ and that both belong to A. Using two changes of

variables we write
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h{A) -h(?d)

e

JT(x)aP, (x) - [r(x)aP(x)

Jiely+d) - £(y+6) Jaqly)

which is nonnegative since y+A>>y+§ for all vy.

An analogous result holds for <<¥. More precisely, suppose we say

RPN

o
oo wMA

that a function is ISO* provided it is isotonic with respect to the par-
tial order <<*. Under the assumption of Theorem 3.1, if f(*) is 150*

then so is h{-).

The proof of the next theorem is an adaptation of the argument given

for Theorem 1.1 in Proschan and Sethuraman (1977).

Theorem 3.2. Suppose A is g subset of the real line which is closed
under addition and assume that @(*,*) is a nonnegative function on A X R
such that gla,x) = 0 for all a and for a1l x < 0. In addition, assume
that ¢(-,) satisfies the semigroup property with respect to W on the
Borel subsets of R {cf. Proschan and Sethuraman (1977)). (We assume

that | is either Lebesgue measure or counting measure on the nonnegative

k
integers.) Suppose f :R* — R is IS0 and h:A -~ R is defined by

h(al,a2

""’ak) = If...J}(x)ﬁ% 1¢(ai,xi)du(xl)-..du(xk)

where the integral is assumed finite. Then h 1is ISO.

Proof: The argument for k = 2 1is similar to the proof of Lemma 2.1 in

Proschan and Sethuraman (1977). We proceed by induction. Assume k = 3
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+++,b ). Define ¢ € RY by ¢, =b

3 = 8357t ts0, T AL Write h{a)-h(b) =

(c) -h(b) and consider, separately, the two differences. The

first difference can be written,

n(a)-n(c) = J]5--JT]]?(x)¢(a1,x1)¢(a2,x2)du(xl)du(x2)

- IProste; oxy )y oy dantny Jamte 1T gt e dasatng) +aute ).

1=

The quantity inside the brackets is nonnegative by the case ,
\

k = 2 since (ul,az) >>Q (c

o
the function f(."’x3’xh"'.’xy) is IS0 on R". The second difference,

1,C?) and since with X3 Xp "t eXy held rixed

h{c) -h(b) is handled similarly using the induction hypothesis, the fuct

that (09,C3,---,ck) >°k- (b?,b . ) and the fact that with X held

1 307"y
X

fixed f(x «++,+) is ISO on R _1.

19's'1

Corollary 3.3. Suppose X 1is a k-dimensional random vector whose distri-

bution, Py, is parameterized by the vector \ = (ll’x“’.'-’xk>’ where

PA satisfies the hypotheses of Theorem 3.1 or Pk is absolutely continuous

with respect to the product measure uxpx ---xy and has density [ 1¢(}\i,xi)
1:

where g(:,-) and H satisfy the hypotheses of Theorem 3.0. If the ran-

dom variable T is defined by T = f(X) where f is 150 then for any

real number a
PﬂTza]zPy[Tza] f

whenever A >> A, o

e
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f
Proof: Note that any nondecreasing function of an IS0 function is S0 f.
and that 1 is nondecreasing.
(a,) ndecreasing
An alternative way of stating the conclusion of thiu corollary is that
the distribution of T wunder X is stochastically larger than its distri-
bution under X . If T 1is a test statistic for a test which rejects for _
y
. . . 1
large values of T then this conclusion states that T has an 80 v
’
t
power function. i
4. Applications. v
()
E
Example L, !.  Suppose we have independent random samples from each of Kk
populations indexed by the parameters 91,0:,.' < ,Qk. We wish to use our i
experimental results to test the hypothesis
.3
i
Ho:0 =0,= = !
0 1 . Ok ;
apainst the atternative ”1-”0 (i.e., H] but. not. HO) whoere
|
H :6,. 206, 2---240. i
101 . k ‘
!
A number of statistics have been proposed for this test. One collection
S -~ t
which has been extensively explored is based on the differences Oi - G’
with i<} where bi is an estimate of Oi (ef. Section b in Barlow f

et al, (107:")). For example, if 0i is the mean of n normal population

then ()i might be the sample mean of the sample from that population.




1l

-1k
Now, for any y, h(y)=f_.‘k 1L

Kk
(y.-y )= (k="i+i)y ., 5o that s test -
i=1 g=i+1 "1 7

i:] 1 P
statistic, formed from h(-), is a special case Of & more genernl contrace

~ .

€. where Cl =c =2 Eck are prespecificd constants,  The et

X

that the function ::(yl,yq,'--.yk)=,_,. c.v,  is IS0 follows immedintely

=1ci

i=] 11
-
from Theorem 2.5. The theory in Section R can be applied. BSuppose @, = ‘Y'i \
: \
is the sample mean of a random sample of size n from @ normel population !

~ -~ ~
having mean Oi' i=1,2,°--,k. The Joint distribution of (01.(;‘.---.(,k) ant -

istfies the hypothesis of Theorem 3.1 :o that the function 2(0' =hg W .6
Yi i k

o

= Ee(S) iz I80. In other words we would expect larger vilue: of

when sampling from populations with parametoers conforminge more clocely ot ¢
H]. In addition, the test rejects for larpe values off 5 5o that i "
Corollary 3.3, the power function of § ia  I80.
. N ,,
ssume that ()i is the mean of a Poisson population and that €, = X
i i
is the mean of a sample ol size n from that population; 1 =1.",-°.kK.
. A . .
The random variable nei has a Poisson distribution and its probability
function satisfies the hypothesis imposed on  ¢(-,+) in Theorem 3.0,
~ ~ ~ ~ ~ ~
Thus, Eg [s(ne1 ,nO;,,---,nek)] = nEols(O].O,,,--',ek)] is 150 and the
A - -
power function ot the statistic ::(01,0‘,'“,0}() is 1IN0,
A second class of test procedures which have been extensively explored
i
in the literature is based upon an £ distance between estimates catis- ‘
: A !
fying the alternative hypotheses. Specifically, it 0 is an unrestricted
S
estimate of 0 then m = 1/k L 0i miyht be a reasonable estimate of .
i=]
— -~
the common vatue of Oi under l{(). 0= I‘(Ol(‘) antisties Hl and would

be a reasonable estimate of 0 satisfying this restriction. In fact, m |

; . . k
i the protection of B onto the collection of veoints  xin K seh

that X5 X, T = xk) A test could be based upon the otatictic




- maae L
7
k= 2
T = L (€, -m)
i=1 ¢
. - k .
Theorem 4.:. Ir y = Fly|C) for eact. y € B then the funetion, (-},
. k
defined on R by
k —_ -1 K
tly) =2 Iy, -¥ T . !
i=1 1! i=1 !
is 100,
i
Prouf: OSurpose y >> x. For any z € C we have, by Theorem 201 4
* (x,-y tz. = Ek (x,-y. )z, + f_k (y.-y.)e. € 2 sinee vy << y.  Thus
i=1 1 1 1 1:1 1 1 1 1=1 1 1 1
x-§ € C* and using Section 4.3 of Rarlow and Brunk [1:/70) we obtwin
kK o K D
) i =L Yy This yields the desired result zince
i=1 i=1
-1 a2 . ) ok ok
tly) = if ;? -k '[{¥ y. | and y >> x implies that o v, = 0 x, .
i=1 1 i=1 1t i=1 1 i=1 -
Thus, the theory develcped in Section 3 cun be applied to atatintien
based upon the function t(+). If the population indexed by Gi i normed
. . e . 2 .
with mean Gi and known variance O and if 0‘1 o the cample mean 0 o
sample of cize n from that populiation then Tn] = 408) i on likelitood
ratio statistic. The distribution of T, under i, is known fof. Barlow ,
- - ~ |
et al. (1972)) and the joint distribution of 91’6“‘”"‘3& saticvic: tLhe
hvpothesis of Theorem 3.1. Thus the power function of Tn} e TO0 0 an o
*
function of €. As with S, similar conclusions ean be drawn about o ota-
j

tistic based upon t{:) under other distributional as:umptions on the
populations. Similar conclusions can be drawn about the Jikelihood ratio

—)
atatistic F° piven in Barlow et al. {1972) when the population variance,

s

¢, i unknown,
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A third statistic which has been proposed for testing HO against

Hl-HO is the number, L, of distinct values among 61,69,---,6k. Let

Hy) be the number of distinct coordirnates in the point P(y|C). If
k=3, y'=(2,1,-3) and y=(7,-k,-3) then y >y’ while £Ly) =7

and Ly'’) = 3. This, of course, does not directly imply that the power
function ot ntatistics based upon 4£(°) are not I20. However, if 6

is a vector of location parameters and if the povulation variances are
very small then we could conelude that power functions of statistics based
upon  £(+} are not 1S0.

Robertcon and Wegman (1978) consider the vroblem of testing H] as a

el

~ _—
null hypothesis. Consider the test statistic T 6-U), which is the

- !
10 !
~

square of “he distance between the unrestricted cstimate ©  and the

. . r . : k
restricted estimate 8. Define the function t  (-):R +—*R by
b

e L
?1‘<JJ Y ~?Wny)L . A consequence of Theorem .1 in Robertson and

Wegman (1074) is that (¢} is antitonic with roespect *a the partial

t
12
order <<, It follows from the theory in Secticn 3 that, under the proper

assumption: on tre nopulations, 0 << 6 implics that EG[TIR]E EO'TT]R]

and PC[GIK? ]2 Pe,{Tl? 2+] for all t (Pe(h> denntes the vrobability
of F  ecalculated under the assumption that €  is the population vector
of parameters).

Now .+ €' = (9;.9;,‘ ".6;) has the property that 6{ L= "
then ¢ >* 6’ rfor all 6 € C. It follows that Yomogeneity (ile., H)
is least favorable tor Tl? within H”. Thyus 1 F the distribation of TL

under H is known then conservative relection regions can te conctructed,

0
In the normal means problem, T\J has n chi-bar-squared distribution
under Hj.

e g e o

4
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As far as we can determine, the next two examples have not been

explored in the literature. They are two additional restricted inference

problems where the chi-bar-squared distribution arises. In fact, the dis-
tribution encountered in Example 2 is a continuous distribution as con-
trasted with previously explored ié? distributions which have a positive
mass at (. In each of these examples if the underlying distribu*ions

are normal the estimates turn out to be maximum likelihood and the test

statistics are likelihood ratio statistics.

Example 4.2, Assume we have k populations which are completely speci-

fied except for the values of k parameters 6. ,0 ,---,0

1250 indexing these

k
populations. Suppose T 1is known, is a possibility for 0, and that we
wish to test the null hypothesis Hl :9 >> 1. This hypothesis i not
simple, in the sense that it completely specifies the distribution of the
test statiatic of interest. However, the theory in Section Three can be
used to show that HO :6 =T is a least favorable confipuration within

Hl' Moreover, the distribution of our test statistic is completely vpeci-
fied under HO and turns out to be a chi-bar-squared distribution. Details

of this arnalysis follow.

~
6 ) is a good unrestricted estimate of 6.

Assume that € = (01. LR

The first problem is to find an ecstimate of 6 which satisfies our null
hypothesis. The hypothesis, “1’ can be written in terms of the Fenchel

dual C. of the cone C. Specifically, H1 :1-0€Cc* so that we con-

o

sider an estimate, O, which minimizes 4&(6) = L. 1(01-8i)‘ subject to
i=
» . . C e . Zk A o
T-6€C . This is equivalent to minimizing & 1[(Ti-9i) -('ri - Oi))
1=
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[}
subject to T-6 € C*. The solution for T-9 is P(7T-8|C*) so that

( (h.1) 6 = T—P(T-éIC*).

Now, P(y[C*) = y-P(y|c) (cf. Section 4.3 of Barlow and Brunk (147.)) s

that another way of representing 8 is

(k.2)

ol
"

6+Pr(r-6|c).

A third representation for 6 can be obtained by considering the et

. : k
A ={z; z > 7} which is a closed convex subset of R (not u cone).

Suppose =z € A and consider

(6-B,6-2) = (P(1-0]0),(1-B) =P(1-8)0)) = (p(1~C]"),7-2)

using (4.2). The first term on the right is zero and the second term in
nonpositive since P(T-—élC) €C and T-z €C*. 1t follews from Theorem
2.2 of Brunk (1965) that 6 = P(B]A).
From Theorem 2.3 of Brunk (1965)’the projection operator PL|A) s
-

continuous so that if 6 is a consistent estimator of 6 then =o is 0,

Now, let's turn to our testing problem. Consider the test statictic
’ P

Kk - ol
T.. =2 (6 -8) for tecting H against ~H . Yeine (L,0),
12 i=1 1 1 !
\"k ~ < . .
qu = L P(T-—GlC)i and it is argued in the proof of Theorem W1
< i=1

X 2
the function t(y) = L. P(ylc){ is ISO. Let Y, =1 -6 5 i=1,'," ",k
i=1

and (ascuming 6 is unbiased for 6) 1ot v, = R(Yi) =T -C.. Muking

} ) i
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the required assumptions about the underlying populations and using Corol-
lary 3.3 we see that if 6 << 6’ (i.e., v >>v') then pelfrmzt,]

2 Pe,f'I‘L‘EL!. Now, 0 >> 1T for all 0 satisfying H] so that, for such
0, Pe['l‘ll‘zt.} < P [P 2t]. Thus, in testing B :8 >> 1, the subhy-

least tavorable and if the distribution of T

pothesis 1 _:6 10

Q

"
-
-
n

can be determined under I{O then convservative ceriticdal regions can be con-
structed.
Concider the normal! means problem (i.c., the distribution correspond-

bl
ing to Oi is normal with mean Oi and variance @ , which is known,

and éi in the sample mean from the ig- popul at fon). Let YU=R-1\:}T 1Yi .
i=
The distribution, under H()' of R = (n/G:‘)L}i(zx(I’(Yl(‘)i —Yn)‘\ is, from
Theorem 3.1 in Barlow et al, (1970), a chi-bar-squared. Moreover
(n/O")'I‘L,‘ = R+k(n/(‘f‘)Y§ so that (n,.’n'\\'I‘l‘,‘ is the sum of two independent

random variables, one having a standard chi-squared distribution and the

other having a chi-bar-squared distribution. The following theorem s a

CGOnsequene:e .

Theorem 4.0, Suppose we have random samples of size n from cach of X

normal poptlation: having means 01.9,‘,--- ‘Gk ana cach havinge variance
g (known'. Let T be the tikelihood ratio statistic deccrited above

1.

tor teatin: H] 10 >> 1 apainst all alternatives. Then

. . X D
Tooxtl = iro o2l = T !‘(l,k)r!)\lzti

B b
i L =1

i

pen. 9
for all real t where POLK) is given by the recursion formula in Corol-
fary B o pape 14 Of Barlow et oal. (19700,

It iv interestingeg to note that *Lia chi<tar-cquared distridbution

-

PV
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differs from those previously studied in that it is absolutely continuous
and the others have a positive mass at zero.

The statistiec T., = ZF (T.--“Q-i)2 might be used for testing H

01 %=y i )

against the alternative Hl-Ho. In the normal means problem the statistic

2 2
{n/a )TOl = (n/c )Zf l(Yi--P(YlC)i)2 is the likelihood ratio statistic
1=

studied by Robertson and Wegman (1978) for testing the null hypothesis

E(Yl) 2 E(Y2) 2 e > E(Yk). It follows from their results that under

2
HO (i.e., E(Yi) =0; i=1,2,°-",k}, (n/c )TO1 has a chi-bar-squared

2 & 2
. . . . o o = i : 1
distribution. Specifically, P[{n/ )TOlztﬂ szlP( k) P[xk_£2 t],

provided HO is true.

Example L.3. Suppose we have a random sample of size n from each of
2
2*k normal populations, each having variance C {(known) and with means

“1’“2""’Hk’vl’vQ’.."vk' Let the corresponding sample means be

xl,xz,---,xk, 1,y2,---,yk. We consider testing the null hypothesis
Hl tH>>v. As in Example 4.2, Hl does not completely specify the distribu-

tion of cur likelihood ratio statistic. However, H_ :p=Vv Ir lesst favorable

and, under HO, the distribution of our statistic is a chi-bar-squared.

Details are given in the next few paragraphs.

The first problem is to find the maximum likelihood estimates which

satisfy H.. These estimates minimize L(u,v) = Z? [(ui-Ig)Q-f(vi—§;)3]

1 i=1

subject to Hl.
Theorem L.5. If (E,C) are the maximum likelihood estimates sublect to

Hl then

P o s " -
B e R

VN e



Proof: Consider the jth term in L(.,-) and suppose (ui,vi) £ (;i,yi).

p— 2 p—
Let g(g) = (pi-o-e—xi) +(vi+e—yi)2. Consider g’(-) and note that if
g’(0) # 0 then there exists an € # O such that
L(M‘L'u2’.”’“i-l’“i+ e"“’lﬁ(’vl’v2"“’vi+€’“"vk) < L{u,v). Moreover,

if (u,v) satisfies H, so does this new point. Thus at (u,v), g(0)=0

for each term and the desired result follows.

Thus Gi = ;i -ui 4~yi and our problem reduces to finding fl Spe-

cifically, we wish to find ¢ which minimizes

i=1,2,--,k with equality when 1 = k. It is convenient to recast our
problem in terms of 6 and 2z where 6J = (uj _;j) and ZJ = (21 —;j)/:‘:
i=1,2,"*°,k. In this notation we wish to minimize f;_lef subject to
the restriction Z;l(z‘ - Gj) <0:i=1,2, -,k with equality for i = k.
This is equivalent to requiring that z -6 € C*. By Theorem 3.4 of Barlow

and Brunk (1972) the solution for 6 is € = P(z|C). Thus

P(“V'E,—XIC)i +x

i
n

(b.3)

i

v. - P10, .
1 1 1

<l
i
)

D

PR eaL.... S




Now, returning to our testing problem, if XlE is the likelihood

ratio for testing Hl against n—Hl then T12 = -2 1n 112 =
2. K - - ol - -
(n/207)L lP(y-—x]C)i. The random variables Yy - X i=1,2,-+-,k are

- - )
independent and yi =X “'n(vi"Lﬁ’ 26 /n). Thus as in Example L.2, T

1e
has a chi-bar-squared distribution under HO tg = Vv and HO is least fav-
orable within Hl’ using Corollary 3.3. Conservative critical regions can

be constructed.

It XOl is the likelihood ratio for testing HO vs. H. -H and

10
= o R e s .
TOl 1nx01 then this statistic can be written
2 - - - - 2
= [of - - Vo .
Toy = (0/2e)L_ 1, - %) -#(7-5l0), 1.

It follows from Corollary 2.6 of Robertson and Wegman (1978) that, under

H T has a chi-bar-squered distribution. Specifically,

0’ 01

P[(T

2
Olzt] = Zklzlp(z,k)P[x k_lzt].

5. Weighted inferences. The assumptions of a common known variance and

equal sample sizes can be relaxed in some of the distribution theory in
Section L. We define a weighted version of the ordering <<. Specifically,

suppose wl,ub,---,uk are positive weights and define: x >>w y if and

J . .
only it 2 X, w =2 y.w, for j=1,2,:--+,k with equality for J = k;
i=1 11 i=1j 1 1

f :Rk — R is ISOw provided f 1is isotonic with respect to <<w;

2 - . .
(x,y)w = E*: X ¥ W uxuu;= (x,x)w; Pw(xlC) is the projection of x

onto C with respect to the norm “.“w and c* = {z €R 3 (x,zhns()
V'x.EC]. The characterization result, Theorem 2.1, becomes x >>u1y if

and only if y-x € c*¥ 4nd the results of Section Two are valid for this
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weighted ordering. The analogue of Theorem 2.5 says that fi(x)Avi p:2
fi+l(X)/wi+1 for a1l x and for i=1,2, --,k-1 implies that f is
ISOm, Theorem 3.1 and the corresponding portion of Corollary 3.3 are valid
in this general setting.

In Example 4.1, if Bi is the mean of a normal population with var-
iance 0? and if éi is the mean of a sample of size g from that pop-
ulation and if w, = ni/Of for i=1,2,---,k then s (as defined in that

3

example) is ISOw and the power function of the associated test is IS0

. Do el . . (o sta-
provided Ci/uﬁ > Ci+1/uk+l’ i=1,2, ,k=1. The likelihood ratio sta
isti t, i : = = ez S . -H_, S : 8
tistic for testing HO 91 62 ek \ Hl HO where Hl 91 2 99
e - k a X
zZ---20 is T.. =¢ u).(e.--m)2 where m=Y%  w0./L w and
k 01 i=1 ¥ 1 j=1 + 1 Ty= 1

6 = Pw(blC). If one modifies the proof of Theorem L.l appropriately then
it is seen that the power formation of the likelihoo.” ratio test is IS0

In the same example, the likelihood ratio test statistic for testing

Hl VS. ~ Hl is Tl? = Z§=luﬁ(@i-g”(§IC)i)P. The corresponding function
is antitonic with respect to << and the least favorable status for HO
within H1 can be obtained.

Similarly, the distribution theory in Examples 4.7 and 4.3 can be
obtained for the normal means problem without assuming equal weights. COne

complication in these results is that the coefficients, P(£,k), in the
chi-bur-squared distribution now depend on uﬁ,u%,~--,uk and can be dif-

ficult to comnute (cf. Robertson and Wright (1980)).
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